LBL Updates

November, 2021



LBL Updates

 Continued work on multi-GPU U-Solve

* works with NVSHMEM on Summit (can run on Traverse, refers to
example scripts/run_cmake build _summit_nvshmem_gpu.sh for compiling)
® available from the nvshmem_multiGPUsolve branch

» Perlmutter(NVIDIA) and Spock(AMD)

* NVSHMEM deadlock issue on Perlmutter traced to CUDA runtime behavior
* ROCSHMEM still has runtime issue on Spock

« Continued updates to 3D Solve / interface

* Note, Nan will be on parental leave thru January



New U-Solve data structure on GPU

Background: SuperLU is designed for sparse LU with non-symmetric nonzero
patterns in L and U factors. We use supernode partition for the L-factor, to get
supernode size (dense submatrix) as large as possible. In general, the U-factor
does not have the same nonzero pattern as the L-factor, so the U data structure

uses a skylined representation that is compatible with the L supernodes partition.
o The big advantage is that we do not store any extra zeros
o The big disadvantage is that it is not friendly for fine-grained parallelism = U-solve
performance is poor on GPU

New design to mitigate L- and U-solve performance discrepancies:

o on GPU, use the same supernode data structure for both L and U, which requires
padding zeros in the U data structure = trade off memory for speed

o On CPU, use the existing data structures.

Code status: factorization is mostly working o
Next step: implement the new U-solve on GPU with this structure
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